352-20095482 粒子法を用いた流体攪拌における抵抗値の予測*

武藤 一夫¹⁾, 酒井 勇²⁾, 尾崎 直人³⁾ Kazuo Muto, Isamu Sakai, Naoto Ozaki

We carried out transient analysis of stirred fluid flow with rotating gear using the particle method (MPS method). The particle method is widely used as an effective technique for free surface flow and also easy to treat the moving boundary. In this research, we focused on the fluid resistance of gear and verified the correspondence with the experiments with two types of gear and two types of rotational rate. As a result, we found that the simulation value of stirring torque was consistent with experimental value in case of low rotational rate.

Key Words: CFD / Gear Box, Fluid Resistance, Particle Method 15

1. 概 要

ギヤボックス内のオイルは構造物の潤滑と冷却という重要 な役割を果たす一方,流体抵抗によってトルク損失を発生さ せる原因となるため,使用するオイルの量や性質,ケーシン グ内壁の形状の選択には慎重さが必要である⁽¹⁾.ケースやギ ヤの形状が決まっている場合でも,与えられた形状に対して 最適な油面高さ,あるいはオイルの物性値を決定することが 課題になってくるが,その過程には速度や傾斜,環境温度な ど走行条件が異なる複数のパターンでの試行を必要とする.

以上のような場合,数値解析によって定性的・定量的にオ イルの挙動が予測できれば設計コストの大幅な削減につなが ると考えられるが,そのためには解析の妥当性を検証するこ とが必要不可欠である.

そこで今回,オイルのかき上げ現象において,解析による 予測がどこまで可能かを明らかにすること目的とし,ギヤボ ックスを模擬した簡易的なモデル(impeller モデル, gear モ デル)を用いて実験と解析をおこなった.本論文では特に,ギ ヤに及ぶ攪拌抵抗に注目し,解析上で算出したトルク値と実 験でトルク計によって得られたトルク値との比較をおこなっ た.比較の結果は4章で報告する.

2. 実 験

実験に用いた装置は円筒形のアクリルケース内にアルミ製 のギヤを一つ配置した簡易的なものである.ギヤ,トルク計, モーターが軸を通して直結しており,モーター駆動によりギ ヤが回転し,トルク計によってオイル攪拌時のトルク値をリ アルタイムで出力する仕組みになっている(Fig.1).ギヤの形

*2009 年 5 月 22 日 自動車技術会春季学術講演会において発表. 1) 静岡理工大学 (〒437-8555 静岡県袋井市豊沢 2 2 0 0 - 2 , <u>kmuto@me.sist.ac.jp</u>) . 2) 3) (株) 富士テクニカルリサー チ (〒220-6219 神奈川県横浜市西区みなとみらい 2-3-5 クイ ーンズタワーC19 階, is_sakai@ftr.co.jp) . 状は板状の八枚羽がついた"impeller"モデルとらせん状の 溝が彫られた"gear"モデルの二種類について検証した.回 転数については 100[rpm]と 1000[rpm]の二段階について検証 した.

オイルには市販のデフオイルを用いた. 30 ℃におけるオイルの物性は以下の通りである.

密度:	0.739	$[g/cm^3]$	
動粘度:	450.5	[cSt]	i at 30℃ 🔆

動粘度については、本装置で実際に攪拌したオイルに対して 粘度計を用いて測定した.実験では油の温度は時間とともに 上昇するが、解析値との比較のため、トルク値を読み取るタ イミングは油の温度が 30 ℃ に達した時点から数秒の間とし た.

以下,実験によるトルク値としては生の測定値からオイル のない空回しでのトルク値を差し引いたものを用いる.

Fig. 1 Experimental setup.

3. 数值解析

今回のケースのように液面が大変形するような流体の解析 には粒子法を用いるのが有効である.粒子法は数値解析にお ける空間の離散化手法の一つであり,液体などの連続体は粒 子の集まりとして表現される.個々の粒子は圧力や速度など の物理量を変数にもち,一定の質量を保持したまま流れに沿 って移動する.計算メッシュを用いないため自由表面や移動 する境界が扱いやすいという利点がある.本解析では,粒子 法の一種である MPS (Moving Particle Semi-implicit)法⁽²⁾ を用いた.

3.1. MPS 法の概要

MPS 法は主に非圧縮流体を対象とし,時間積分に半陰的アル ゴリズムを用いるという特徴がある.計算の1 step は大まか に以下の3つのフェーズに分けられる.

- i. 陽的計算による粒子座標の更新
- ii. 陰的計算による圧力値の算出
- iii. 圧力勾配による粒子座標の更新

iの段階では重力と粘性力に従って、粒子の仮の座標を陽的 に算出する.壁を移動させる場合、壁の位置の更新はこの段 階の最後に行う.iiの段階では非圧縮条件に基づき圧力の Poisson 方程式を構成し、それを解くことで各粒子の圧力値を 求める.iiiの段階では圧力勾配に従って粒子の座標を修正し 最終的な粒子配置を決定する.

i と iii の段階では粒子間にはたらく粘性力と圧力勾配を 計算する必要がある. それらの計算には MPS 法の粒子間相互 作用モデルを用いる⁽²⁾. このときある粒子に作用する力は, その粒子から一定の範囲(影響半径)内に存在する粒子との 相互作用を重み付けで足し合わせたものに等しい. 影響半径 の外にある粒子とは相互作用しない.

3.1. トルク算出の概要

固定した軸周りに回転する物体が流体を攪拌している状況 において、物体の回転に要するトルク c は次のように書ける.

$\tau = \tau_press + \tau_viscosity + \tau_inertia$

ここで*τ_press*, *τ_viscosity*, *τ_inertia* はそれぞれ圧力,粘性,慣性によるトルクへの寄与である.

慣性によるトルク τ_inertia は一般に無視できない値をとる が、今回興味があるのは軸対象モデルの定常回転時のトルク 値であるため、 とし、トルクの計算にはじめから考慮しないものとした.

圧力,粘性によるトルク $\tau_x(x = press, viscosity)$ は,壁とし てみなされた回転体が,流体粒子に与えた力の反作用として 次のように算出する.

$$\tau_x = -\Sigma \{ \boldsymbol{b} \cdot (\boldsymbol{r}_i \times \boldsymbol{F}_x_i) \}$$

添え字 i は壁と相互作用する流体粒子の index を表す. Σ はiについて和をとることを意味する. b は回転軸方向の単位ベ クトル, r_i は回転軸上の一点と、粒子 i と相互作用した壁上 の一点を結ぶベクトル, F_x_i は壁が粒子 i に与えた力を表 す. τ_press については 3.1 節で説明した MPS 法の計算段階の iii での計算結果を用いる. すなわち

$F_press_i = m_i \times a_i$

とする. ここで m_i は粒子 i の質量, a_i は粒子 i と壁の間 の圧力勾配によって粒子が得た加速度である. τ_v is cosity につ いては計算段階の i での計算結果を用いる.

壁がポリゴンの場合,粒子 *i* と相互作用するのは最近接の ポリゴンのみとし,作用点は粒子 *i* の座標をポリゴン上に射 影した位置にあるとする(Fig. 2).流体粒子とポリゴンとの相 互作用には,壁重み関数を用いた相互作用モデルを用いる⁽³⁾. 壁重み関数はポリゴンが粒子に与える影響の強さを表し,ポ リゴンから遠いほど小さくなり,一定距離を超えると 0 とな るような関数である.したがってポリゴンとの相互作用を計 算するのは,ポリゴンの近傍にある流体粒子のみでよい.

Fig. 2 Particle-Polygon interaction.

3.2. 解析条件

解析ではオイルに粒子モデル,ケースとギヤにポリゴンモ デルを用いた.ギヤの回転数は計算開始後 0.5[sec]まで直線 的に増加させ,その後一定とした.壁面と流体の間には no-slip条件を与えた.そのほか油面高さや物性値等の条件は 実験と同様とした.

4. 結 果

Fig.3 (a)-(d) は実験と解析でのオイル挙動のスナップショ ットである.解析の画像は計算開始から2秒後のものであり, この時点までギヤが回った回数は(a),(c)で2回程度,(b),(d) で20回程度である.実験の画像はオイルの温度が30℃に達 した時点のもので攪拌開始から数分経過している.攪拌した オイルには白濁がみられた.白濁したオイルは数分間放置し ておけば元の透明な状態に回復するため,白濁は攪拌によっ て細かい気泡が混入した結果であると予想される.白濁状態 とそうでない状態とで物性が若干異なったが,解析では白濁 状態の物性値を用いた.

高回転のケースでは比較しにくいが、底にたまったオイル の高さや形状が、実験と解析でよく一致していることが確認 できる.一方実験で見られる、オイルの尾を引くような挙動 やアクリルケースへの付着は解析では再現できていないこと がわかる.

Fig. 4 は解析でのトルク値の時間変化をプロットしたもの である. データは gear モデルで 1000 [rpm]の解析のもの(Fig. 3 (d) に対応) である. 初期段階において回転数の増加に伴いト ルク値が上昇しているが,回転数が一定となる 0.5 秒以降は 傾向が変わらないことが確認できる. 1.5~2.0 秒間での解析 でのトルク値の平均は 0.158 [N・m],ばらつきは 0.02 [N・m] 程度であった.比較のため図中に実験値を示した.ただし実 験値はデジタル値を目視で記録したものであるため,平均値 とその周りでのばらつきの幅のみを示した.実験でのトルク 値の平均は本ケース (gear model, 1000 [rpm])では 0.18± 0.02 [N・m]であった.

Table.1 は今回,実験と解析を行った全ケースのトルク値の 結果である.解析値は 1.5~2.0 秒の平均とした.抵抗値は gear モデルより impeller モデルのほうが,回転数は100[rpm] より 1000[rpm]のほうが大きいことが実験と解析の両者にお いて確認できる.実験値と解析値のずれは,高回転ほど大き くなった.特に impeller モデルではその傾向が顕著であり, ずれの絶対値としても大きかった.

Fig. 4 Time change of fluid resistance by simulation (gear model at 1000 [rpm]).

Table. 1 Torque value.

"case" a-d correspond to (a)-(d) in Fig. 3. " τ _exp" and " τ _sim" mean simulation value and experimental value respectively. "error" is given by 100 * (τ _sim_ τ _exp.)/ τ _exp.

$\frac{1}{100} = \frac{1}{100} $							
case	model	rate	τ_exp	τ_sim	error		
		[rpm]	[N•m]	[N•m]	[%]		
а	impeller	100	0.095	0.079	-17		
b	impeller	1000	0.215	0.378	76		
с	gear	100	0.075	0.072	-4.6		
d	gear	1000	0.180	0.158	-12		

5. 考 察

Fig.5 に case a(100[rpm])と case b(1000[rpm])の圧力分 布の様子を示す. 流体内部の圧力を見るため中心部分でカッ ト表示してある.表示の圧力は相対圧力でありコンターの範 囲は 0~0.5[kPa] である. 羽の進行方向側の流体に注目すると, case a では羽近傍から自由表面にかけて圧力値が滑らかに分 布しているのに対し case b では分布が一部に局在し、その周 囲で振動しているのがわかる.時間的にみても case a では常 時安定した分布を示すが, case b では振動することが確認で きた. 高回転時に圧力が振動するという傾向は case c と case d との間にも見られた. 圧力の振動はトルク値の変化にも影 響し, Fig.4 に見られるようなデータのばらつきはその結果で ある. Fig.6 に case a と case b の, 圧力によるトルクと粘 性によるトルクの割合を示す.縦軸は1.5-2.0[sec]間の全ト ルク値の平均でスケールしてある. これより圧力によるトル クのばらつきは高回転ほど大きいことがわかる. トルク値の 標準偏差は case b では case a の4 倍以上となった. 結果的 にトルク値の誤差が大きくなる原因もこのような圧力振動の 影響のためだと予想される.以上のような圧力の振動は非物 理的なものであり数値計算に特有のものである. MPS 法の圧力 振動を抑える改良アルゴリズムも考案されている(4)(5)が,本解 析では用いていない.

ー方,粘性によるトルク値 τ_v iscosity は回転数によらず安定した値を示した.case c,d において比較的よい精度でトルク値が得られたのは,gear モデルでは全トルク値 τ に対する τ_v iscosity の寄与が大きくなるためであると考えられる. 全トルク値に対する τ_v iscosity の割合は case a では 14 % 程度であったのに対し case c では 58 % に上った.

以上のことから case b においてトルク値の精度が最も悪 くなったのは、ギヤの形状の特性上、全トルク値に占める圧 力によるトルク値の割合が大きくなった上、高回転による数 値的な振動がトルク値に影響したためと考えられる.

Fig. 5 Pressure distribution of fluid (sectional view). (a) 100 [rpm], (b) 1000 [rpm]

Fig. 6 . Contribution of pressure-torque and viscosity-torque . (a) impeller, 100 [rpm], (b) impeller, 1000 [rpm]

6. 結 論

粒子法(MPS 法)を用いた数値解析によって, 簡易ギヤボック スモデルにおけるオイルの攪拌抵抗値の予測がある程度可能 であることを示した.特に低回転時(100[rpm])では実験値に かなり近い結果が得られた.一方,高回転時(1000[rpm])で は解析値と実験値の差が大きくなった.高回転時での精度の 悪化は,解析において流体粒子の圧力値が時間・空間的に振 動しデータのばらつきが大きくなってしまったことが原因の 一つと考えられる.またギヤ壁面の法線が運動方向を向くよ うな形状でも誤差が大きくなった.これは全流体抵抗の内, 圧力勾配による影響が粘性力による影響よりも相対的に大き くなったためと考えられる.

以上より, MPS 法を用いた流体攪拌における抵抗値の予測は 1000[rpm]以上の高回転領域での精度向上が課題であり、その ためには MPS 法の圧力計算の安定化⁽⁴⁾⁽⁵⁾が今後の課題となっ てくるといえる.

参考文献

- (1) 自動車技術ハンドブック4設計(パワートレイン)編,社団法人 自動車技術会(2005)
- (2) 越塚誠一: 粒子法, 丸善(2005)
- (3) T. Harada, et al.: MPS 法における壁境界モデルの改良, Transactions of JSCES, No20080006, (2008)
- (4) M. Kondo, S. Koshizuka: MPS 法における不自然な数値 振動の抑制, Transactions of JSCES, No20080015, (2008)
- (5) M. Tanaka, T. Masunaga: 疑似圧縮性効果による MPS 法の安定化と圧力の平滑化, Transactions of JSCES, No20080025, (2008)